5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis.

نویسندگان

  • Wenjuan Su
  • Oladapo Yeku
  • Srinivas Olepu
  • Alyssa Genna
  • Jae-Sook Park
  • Hongmei Ren
  • Guangwei Du
  • Michael H Gelb
  • Andrew J Morris
  • Michael A Frohman
چکیده

The signaling enzyme phospholipase D (PLD) and the lipid second messenger it generates, phosphatidic acid (PA), are implicated in many cell biological processes, including Ras activation, cell spreading, stress fiber formation, chemotaxis, and membrane vesicle trafficking. PLD production of PA is inhibited by the primary alcohol 1-butanol, which has thus been widely employed to identify PLD/PA-driven processes. However, 1-butanol does not always effectively reduce PA accumulation, and its use may result in PLD-independent deleterious effects. Consequently, identification of potent specific small-molecule PLD inhibitors would be an important advance for the field. We examine one such here, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI), which was identified recently in an in vitro chemical screen for PLD2 inhibitors, and show that it rapidly blocks in vivo PA production with subnanomolar potency. We were surprised to find that several biological processes blocked by 1-butanol are not affected by FIPI, suggesting the need for re-evaluation of proposed roles for PLD. However, FIPI does inhibit PLD regulation of F-actin cytoskeleton reorganization, cell spreading, and chemotaxis, indicating potential utility for it as a therapeutic for autoimmunity and cancer metastasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orexin A Inhibits Propofol-Induced Neurite Retraction by a Phospholipase D/Protein Kinase Cε-Dependent Mechanism in Neurons

BACKGROUND The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction. METHODS In primary cortical cell cultures from n...

متن کامل

Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke--brief report.

OBJECTIVE We recently showed that mice lacking the lipid signaling enzyme phospholipase (PL) D1 or both PLD isoforms (PLD1 and PLD2) were protected from pathological thrombus formation and ischemic stroke, whereas hemostasis was not impaired in these animals. We sought to assess whether pharmacological inhibition of PLD activity affects hemostasis, thrombosis, and thrombo-inflammatory brain inf...

متن کامل

A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity.

Platelet aggregation, secretion and thrombus formation play a critical role in primary hemostasis to prevent excessive blood loss. On the other hand, uncontrolled platelet activation leads to pathological thrombus formation resulting in myocardial infarction or stroke. Stimulation of heterotrimeric G-proteins by soluble agonists or immunoreceptor tyrosine based activation motif-coupled receptor...

متن کامل

Reversible bleb formation in mast cells stimulated with antigen is Ca2+/calmodulin-dependent and bleb size is regulated by ARF6.

Mast cells stimulated with antigen undergo extensive changes in their cytoskeleton. In the present study, we assess the impact of actin-modifying drugs and report that, in the presence of cytochalasin D, mast cells stop membrane ruffling, but instead bleb. Bleb formation is reversible following washout of cytochalasin D and occurs in an actin-polymerization-dependent manner. Bleb formation is i...

متن کامل

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 2009